Simple Random Sampling – Statistik dan Parameter

Peluang Terpilih Sampel (Inclusion Probability)

Ketika mengambil satu unit sebagai sampel, peluang unit ke-i untuk terpilih sebagai sampel adalah sebagai berikut.

\[ p_i = \frac{1}{N} \]

Misalkan kita mengambil sampel sebanyak n kali, maka peluang unit ke-i untuk terpilih dalam sampel (inclusion probability) adalah penjumlahan dari peluang terpilihnya unit tersebut pada pengambilan yang pertama, kedua, ketiga, dst. sampai dengan pengambilan ke-n.

SRS WR

\[ \pi_i = \frac{1}{N} + \frac{1}{N} + \cdots + \frac{1}{N} \] \[ \pi_i = \sum_{i=1}^{n} \frac{1}{N} \] \[ \pi_i = \frac{n}{N} \]

SRS WOR

\[ \pi_i = \frac{1}{N} + \frac{N-1}{N} \cdot \frac{1}{N-1} + \cdots + \frac{N-n}{N} \frac{1}{N-n} \] \[ \pi_i = \sum_{i=1}^{n} \frac{1}{N} \] \[ \pi_i = \frac{n}{N} \]

Estimasi

Nilai yang Diestimasi SRS WR SRS WOR
Rata-Rata \[ \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \]
Varians Rata-Rata \[ v(\overline{y}) = \frac{s^2}{n} \] \[ v(\overline{y}) = \frac{N-n}{N} \cdot \frac{s^2}{n} \]
Total \[ \widehat{Y} = \frac{N}{n} \sum_{i=1}^{n} y_i = N \overline{y} \]
Varians Total \[ v(\overline{Y}) = N^2 \cdot \frac{s^2}{n} \] \[ v(\overline{Y}) = N^2 \cdot \frac{N-n}{N} \cdot \frac{s^2}{n} \]

Pembuktian

Rata-Rata

Estimasi rata-rata yยฏ adalah estimasi yang unbiased dari parameter Yยฏ

\[ E(\overline{y}) = E(\frac{1}{n} \sum_{i=1}^{n} y_i) \] \[ E(\overline{y}) = \frac{1}{n} \sum_{i=1}^{n} E(y_i) \] \[ E(\overline{y}) = \frac{1}{n} \sum_{i=1}^{n} (\sum_{i=1}^{n} p_i Y_i) \] \[ E(\overline{y}) = \frac{1}{n} \sum_{i=1}^{n} (\sum_{i=1}^{n} \frac{Y_i}{N}) \] \[ E(\overline{y}) = \frac{1}{n} \sum_{i=1}^{n} \overline{Y} \] \[ E(\overline{y}) = \frac{1}{n} (n \cdot \overline{Y}) \] \[ E(\overline{y}) = \overline{Y} \]

Varians Rata-Rata

\[ V(\overline{y}) = E(\overline{y} - \overline{Y})^2 \] \[ V(\overline{y}) = E[\frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{Y})]^2 \] \[ V(\overline{y}) = \frac{1}{n^2} E[\sum_{i=1}^{n} (y_i - \overline{Y})]^2 \] \[ V(\overline{y}) = \frac{1}{n^2} E[\sum_{i=1}^{n} (y_i - \overline{Y})^2 + \sum_{i \neq j}^{n} (y_i - \overline{Y})(y_j - \overline{Y})] \] \[ V(\overline{y}) = \frac{1}{n^2} \sum_{i=1}^{n} E(y_i - \overline{Y})^2 + \frac{1}{n^2} \sum_{i \neq j}^{n} E(y_i - \overline{Y})(y_j - \overline{Y}) \] \[ V(\overline{y}) = \frac{1}{n^2} \sum_{i=1}^{n} [\sum_{i=1}^{n} \frac{1}{N} (y_i - \overline{Y})^2] + \frac{1}{n^2} \sum_{i \neq j}^{n} [\frac{1}{N} \cdot \frac{1}{N-1} \sum_{i \neq j}^{N} (y_i - \overline{Y})(y_j - \overline{Y})] \] \[ V(\overline{y}) = \frac{1}{n^2} \sum_{i=1}^{n} \sigma^2 + \frac{1}{n^2} \cdot \frac{1}{N} \cdot \frac{1}{N-1} \cdot \sum_{i \neq j}^{n} [ [\sum_{i=1}^{N} (y_i - \overline{Y})]^2 - \sum_{i=1}^{N} (y_i - \overline{Y})^2] \] \[ V(\overline{y}) = \frac{1}{n^2} (n \cdot \sigma^2) + \frac{1}{n^2} \cdot \frac{1}{N} \cdot \frac{1}{N-1} \cdot \sum_{i \neq j}^{n} [-\sum_{i=1}^{N} (y_i - \overline{Y})^2] \] \[ V(\overline{y}) = \frac{\sigma^2}{n} - (\frac{1}{n^2} \cdot \frac{1}{N} \cdot \frac{1}{N-1} \cdot \sum_{i \neq j}^{n} \sigma^2) \] \[ V(\overline{y}) = \frac{\sigma^2}{n} - \frac{1}{n^2} \cdot \frac{1}{N} \cdot \frac{1}{N-1} \cdot n(n-1) \sigma^2 \] \[ V(\overline{y}) = \frac{N-n}{N-1} \cdot \frac{\sigma^2}{n} \] \[ V(\overline{y}) = \frac{N-n}{N} \cdot \frac{S^2}{n} \rightarrow Rumus \: Varians \: SRS \: WOR \] \[ V(\overline{y}) = (1 - \frac{n}{N}) \cdot \frac{S^2}{n} \] \[ V(\overline{y}) = (1-f)\cdot \frac{S^2}{n} \]

Keterangan Tambahan

\[ \frac{N-n}{N} \rightarrow Finite \: Population \: Corrections \: (FPC) \] \[ f = \frac{n}{N} \rightarrow Sampling \: Fraction \]

Jika sampel diambil dengan SRS WR, maka yi dan yj akan saling statistically independent, sehingga:

\[ E(y_i - \overline{Y})(y_j - \overline{Y}) = 0 \] \[ V(\overline{y}) = \frac{1}{n^2} \cdot n \cdot \sigma^2 = \frac{\sigma^2}{n} \rightarrow Rumus \: Varians \: SRS \: WR \]

Total Karakteristik

\[ \widehat{Y} = N \cdot \overline{y} \]

Penduga total tersebut adalah unbiased estimator untuk parameter Y, dapat dibuktikan:

\[ E(\widehat{Y}) = E(N \cdot \overline{y}) = N \cdot E(\overline{y}) = N \cdot \overline{Y} = Y \]

Estimasi varians dari penduga total karakteristik.

\[ v(\widehat{Y}) = v(N \cdot \overline{y}) = N^2 \cdot \overline{y} \]

SRS WR

\[ v(\widehat{Y}) = N^2 \cdot \frac{s^2}{n} \]

SRS WOR

\[ v(\widehat{Y}) = N^2 \cdot \frac{N-n}{N} \cdot \frac{s^2}{n} \]

Prosedur Pemilihan Sampel

Lottery Method

Dilakukan dengan cara pengacakan menggunakan lotre

Tabel Angka Random

Menggunakan tabel yang telah disediakan dengan metode berikut:

  • Independent Choice Of Digits
  • Pendekatan Sisa (Remainder Approach)
  • Pendekatan hasil bagi (Quotient Approach)

Materi Lengkap

Berikut adalah materi lainnya yang membahas mengenai Simple Random Sampling.


Tonton juga video pilihan dari kami berikut ini

Bagikan ke teman-teman Anda

Contact Us

How to whitelist website on AdBlocker?

How to whitelist website on AdBlocker?

  1. 1 Click on the AdBlock Plus icon on the top right corner of your browser
  2. 2 Click on "Enabled on this site" from the AdBlock Plus option
  3. 3 Refresh the page and start browsing the site
Up